SINGLE-PHASE RECTIFIERS

- What are rectifiers?
- Types of rectifiers.
- Single-phase diode rectifiers.
- Single-phase thyristor rectifiers.

What are rectifiers?

Rectifiers are devices that convert **AC** voltages/currents into **DC** voltages/currents.

Important note - they provide "either" small ΔU_{DC} "or" small ΔI_{DC} .

What is a DC and what is an AC variable?

Types of rectifiers:

Uncontrolled vs Controlled (vs Half/semi-controlled)

Single-phase vs Three-phase (vs Multi-phase)

Half-wave vs Full-wave

Voltage multipliers

Single-phase diode (uncontrolled) rectifier

$$U_{LDmax} = \sqrt{2} \cdot U_{AC} - 2 \cdot V_D$$

$$u_{LD} = u_{AC} - 2 \cdot V_D$$

$$i_C = i_D - i_{LD}$$
 $i_{AC} = i_D$

$$U_{LDmax} = \sqrt{2} \cdot U_{AC} - 2 \cdot V_D$$

$$i_C = i_D - i_{LD}$$
 $i_{AC} = -i_D$

$$u_{DC} \approx U_{LDmax} \cdot e^{-\frac{\omega t - \frac{\pi}{2}}{\omega \cdot \tau}}, \tau = C \cdot R$$

$$i_C = -i_{LD}$$
 $i_{AC} = i_D = 0A$

Single-phase diode (uncontrolled) rectifier

Direct start with a discharged capacitor:

Capacitor sizing:

Assumption - $\Delta U_{LD} \ll U_{LD} \ (\Delta U_{LD} \approx 0)$

=> $i_{LD} \approx I_{LD}$ and the discharge time is (whole) 10ms.

$$\Rightarrow \Delta U_{LDmax} = \frac{Q}{C} = \frac{I_{LD} \cdot 10ms}{C} \text{ or } C = \frac{I_{LD} \cdot 10ms}{\Delta U_{LDmax}}$$

Example:

$$U_{AC} = 230V (50Hz), R = 150\Omega, C = 470\mu F$$

$$U_{LDmax} = \sqrt{2} \cdot 230V = 325V$$

$$I_{LD} \approx \frac{U_{LDmax}}{R} = \frac{325V}{150\Omega} = 2,17A$$

$$\Delta U_{LD} = \frac{2,17 \cdot 10m}{470\mu} = 46V$$

Single-phase thyristor (controlled) rectifier

Single-phase thyristor (controlled) rectifier

Direct start:

Discontinuous i_{LD}:

Synchronization:

Single-phase thyristor (controlled) rectifier

Continuous conduction mode (continuous i_{LD}):

Average load voltage (U_{LD}):

Average load current (I_{LD}):

Single-phase thyristor (controlled) rectifier

Continuous conduction mode (continuous i_{LD}):

$$U_{AC} = 230V (50Hz), R = 5\Omega,$$

 $L = 100mH, E = 129,3V$

Average load voltage - example:

$$U_{LD} = \frac{2\sqrt{2}}{\pi} \cdot U_{AC} \cdot \cos\alpha = \frac{2\sqrt{2}}{\pi} \cdot 230 \cdot \cos\left(\frac{\pi}{6}\right) = 179,3V$$

Average load current - example:

$$I_{LD} = \frac{U_{LD} - E}{R} = \frac{179,3 - 129,3}{5} = 10A$$

Choose thyristors:

Single-phase thyristor (controlled) rectifier

Discontinuous conduction mode (discontinuous i_{I D}):

Average load voltage (U_{LD}):

$$U_{LD} = \frac{1}{\pi} \left[\int_{\alpha}^{\beta} \sqrt{2} \cdot U_{AC} \cdot \sin(\omega t) \cdot d(\omega t) + \int_{\beta}^{\pi + \alpha} E \cdot d(\omega t) \right]$$
$$= \frac{\sqrt{2} \cdot U_{AC}}{\pi} \cdot \left[\cos \alpha - \cos \beta \right] + E \cdot \frac{\pi + \alpha - \beta}{\pi}$$

Load current (i_{LD}):

$$i_{LD} = A \cdot \sin(\omega t - \varphi) + B \cdot e^{-\frac{\omega t - \alpha}{\omega \tau}} + C$$

$$i_{LD}(\beta) = 0 \implies 0 = A \cdot \sin(\beta - \varphi) + B \cdot e^{-\frac{\beta - \alpha}{\omega \tau}} + C$$

Single-phase thyristor (controlled) rectifier

Discontinuous conduction mode (discontinuous i_{LD}):

Single-phase rectifiers - important notes

- There are controlled and uncontrolled rectifiers,
- Filtering is extensively used,
- Filters influence the semiconductor devices conduction times,
- Diode bridge secures output voltage with small ripple,
- Thyristor bridge secures output current with small ripple,
- They drive different types of load,
- Load current can be discontinuous in thyristor bridges,
- Thyristor bridges necessitate synchronization unit,
- Comutation is process of importance for thyristor bridges,
- For continuous load current, the thyristor bridge can behave both as a rectifies and as an inverter (depending on firing angle).

