THREE-PHASE RECTIFIERS

- Three-phase diode rectifiers.
- Three-phase thyristor rectifiers.

Diode vs thyristor rectifiers

These rectifiers provide "either" small ΔU_{DC} "or" small ΔI_{DC} .

Types of three-phase rectifiers:

Uncontrolled vs Controlled (vs Half/semi-controlled)

Half-wave vs Full-wave

Three-phase diode (uncontrolled) rectifier

$$\begin{aligned} U_{LDmax} &= \sqrt{2} \cdot U_L \\ u_{-N} &\approx u_{R'} \ u_{+N} \approx u_S \\ u_{LD} &= u_{+N} - u_{-N} \approx u_{RS} \\ i_R &= i_{LD}, i_S = -i_{LD} \\ i_C &= i_D - i_{LD}, \end{aligned}$$

$$u_{-N} \approx u_{+N} \approx u_{+N} \approx u_{LD} = i_R = i_S = i_C = i_C = i_R \approx u_{+N} \approx u_{+N}$$

$$u_{-N} \approx u_{+N} \approx$$
 $u_{LD} =$
 $i_R = i_S =$
 $i_C =$

$$u_{-N} \approx u_{+N} \approx$$
 $u_{LD} =$
 $i_R = i_S =$
 $i_C =$

$$u_{LD} \approx U_{LDmax} \cdot e^{-\frac{\omega t - \frac{\pi}{2}}{\omega \cdot \tau_{LD}}}, \quad \tau_{LD} = C \cdot R$$

$$i_{R} = 0A$$

$$i_{C} = -i_{LD}$$

Three-phase diode (uncontrolled) rectifier

Three-phase diode (uncontrolled) rectifier

Direct start with a discharged capacitor:

Capacitor sizing:

Assumption - $\Delta U_{LD} \ll U_{LD} \ (\Delta U_{LD} \approx 0)$

=> $i_{LD} \approx I_{LD}$ and the discharge time is (whole) 10/3 ms.

$$\Rightarrow \Delta U_{LDmax} = \frac{Q}{C} = \frac{I_{DC} \cdot \frac{10}{3} ms}{C} \text{ or } C = \frac{I_{DC} \cdot \frac{10}{3} ms}{\Delta U_{LD}}$$

Example:

$$U_{ACL} = 400V (50Hz), P_{LD} = 5kW, \Delta U_{LDmax} \le 10\% \cdot U_{LD}$$

$$U_{LD} \approx U_{LDmax} = \sqrt{2} \cdot U_L = \sqrt{2} \cdot 400 = 566V$$

$$I_{LD} = \frac{5kW}{566V} = 8.84A$$
, $\Delta U_{DC} = 57V$

$$C = \frac{8.84 \cdot 3.33ms}{57} = 516\mu F$$

Three-phase thyristor (controlled) rectifier

Three-phase thyristor (controlled) rectifier

Three-phase thyristor (controlled) rectifier

Direct start:

Discontinuous i_{LD}:

Synchronization:

Three-phase thyristor (controlled) rectifier

Continuous conduction mode (continuous i_{LD}):

Average load voltage (U_{LD}):

Average load current (I_{LD}):

Three-phase thyristor (controlled) rectifier

Continuous conduction mode (continuous i_{LD}):

$$U_{AC} = 3x400V$$
 (50Hz), $R = 1\Omega$, $L = 30mH$, $E = 417.8V$, $L_{ac} = 100\mu$ H, $\alpha = \frac{\pi}{6}$

Average load voltage - example:

$$U_{LD} = \frac{3\sqrt{2}}{\pi} \cdot U_L \cdot \cos\alpha = \frac{3\sqrt{2}}{\pi} \cdot 400 \cdot \cos\left(\frac{\pi}{6}\right) = 467.8V$$

Average load current - example:

$$I_{LD} = \frac{U_{LD} - E}{R} = \frac{467.8 - 417.8}{1} = 50A$$

Choose thyristors:

Single-phase thyristor (controlled) rectifier

Discontinuous conduction mode (discontinuous i_{LD}):

Average load voltage (U_{LD}):

$$U_{LD} = \frac{1}{\pi/3} \left[\int_{\frac{\pi}{6} + \alpha}^{\frac{\pi}{6} + \beta} \sqrt{2} \cdot U_L \cdot \sin\left(\omega t + \frac{\pi}{6}\right) \cdot d(\omega t) + \int_{\frac{\pi}{6} + \beta}^{\frac{\pi}{2} + \alpha} E \cdot d(\omega t) \right] = \cdots$$

Average load current (I_{LD}):

$$I_{LD} = \frac{U_{LD} - E}{R}$$

Three-phase rectifiers - important notes

- Three-phase rectifiers are used in higher power applications,
- There are controlled and uncontrolled rectifiers,
- Filtering is extensively used,
- Filters influence the semiconductor devices conduction times,
- Diode bridge secures output voltage with small ripple,
- Thyristor bridge secures output current with small ripple,
- They drive different types of load,
- Load current can be discontinuous in thyristor bridges,
- Thyristor bridges necessitate synchronization unit,
- Commutation is process of importance for thyristor bridges,
- For continuous load current, the thyristor bridge can behave both as a rectifier and as an inverter (depending on firing angle).

