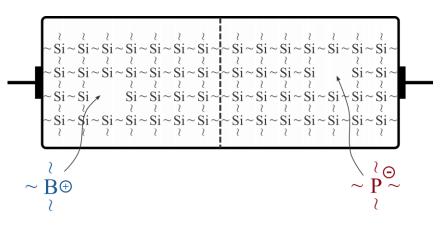
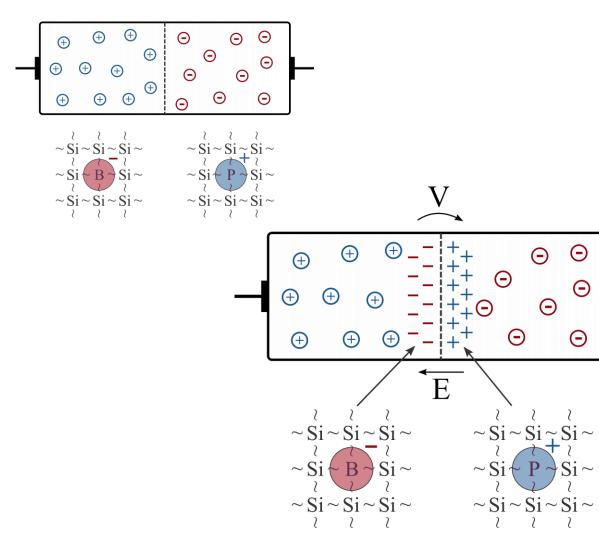
DIODES

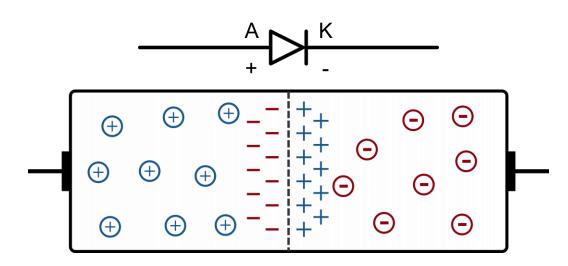

- What is a p-n junction?
- How p-n junction/diode operates?
- How do we address and use diodes in circuits?
- Types of diodes.

Diodes - p-n junction

How is the p-n junction created?

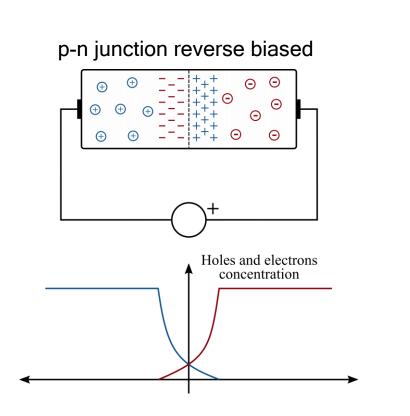
Silicon wafer (substrate, slice)


ſ)))))))))))))	,
ł	\sim Si \sim S	i~Si~	Si~S	i~Si~	~ Si~	~Si~	Śi~	Si~	Si~	Śi~	Śi~	Si~
	$\sim {\stackrel{\scriptstyle \scriptstyle \scriptstyle \scriptstyle }{\rm Si}}\sim {\scriptstyle \scriptstyle $	i∼Si~	$\frac{1}{Si} \sim \frac{1}{S}$	i∼Si~	~ ši~	$\sim \dot{\text{Si}} \sim$	$\frac{1}{\text{Si}} \sim$	$\dot{\text{Si}} \sim$	$\frac{\partial}{\mathrm{Si}} \sim$	$\frac{1}{\text{Si}} \sim$	$\frac{\partial}{\mathrm{Si}} \sim$	∠ Si~
,	$\sim {\stackrel{\scriptstyle \scriptstyle \sim}{\rm Si}}\sim {\stackrel{\scriptstyle \scriptstyle \scriptstyle \sim}{\rm S}}$	≀ i∼Si∼	$\frac{2}{Si} \sim S$	≀ i∼Si∼	2 ~Si~	2 ~Si~	≥ Si~	≀ Si~	≥ Si~	≥ Si~	≀ Si~	≀ Si~
I	2 2	2	2 2	2	2	2	2	2	2	2	2	2
ľ	$\sim \operatorname{Si}_{2} \sim \operatorname{Si}_{2}$	$1 \sim S_1 \sim \frac{1}{2}$	2 S1 \sim S 2 2	$1 \sim S_1 \sim \frac{1}{2}$	$\sim S_1 \sim \frac{1}{2}$	$\sim S_1 \sim \frac{1}{2}$	$\frac{S_1}{2}$	$S_1 \sim 2$	$\frac{S_1}{2}$	$S_1 \sim 2$	$\frac{S_1}{2}$	$\frac{S1}{2}$
l				,	Ì	,		,	,	,		È.



 \oplus Θ \oplus Θ Θ (+)(+)Θ Θ (+) (+)Θ Θ \oplus (+)Θ Θ (+)(+)Θ $\sim \underbrace{\operatorname{Si}}_{i} \sim \underbrace{\operatorname{Si}}_{i} \subset \operatorname{Si}}_{i} \operatorname{Si}}_{i} \subset \operatorname{Si}}_{i} \operatorname{Si}}_{i$

Diodes - p-n junction


How is the p-n junction created?

P-type junction *p*⁺ majority charge *e*⁻ minority charge N-type junction p^+ minority charge *e* majority charge

Diodes - p-n junction polarization

p-n junction forward biased Θ Ð Θ (+)Θ (+)Θ Θ Ð \oplus Θ Ð Ð ΘΘ \oplus Θ Holes and electrons concentration Θ Ð Θ Ð Θ E Θ 0 Ð Θ \oplus Θ Θ

 \oplus

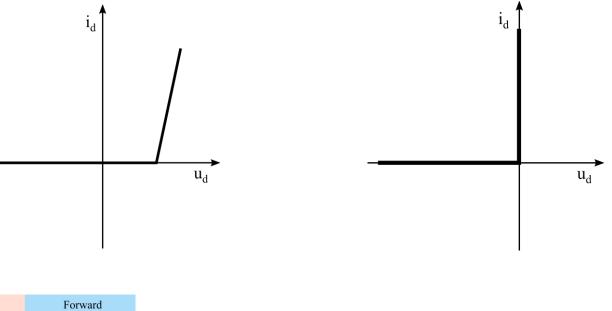
Ð

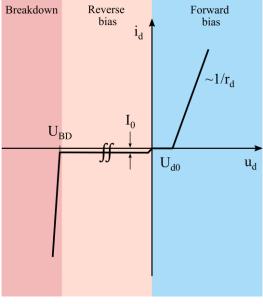
$$p_c = p_{c0} \left(e^{kT\nu_d/q_e} - 1 \right)$$
$$\frac{dq(t)}{dt} = i(t) - \frac{q(t)}{\tau_L}$$
$$i(t) = \frac{q(t)}{\tau_L} = \frac{Q}{\tau_L} \left(e^{kT\nu_d(t)/q_e} - 1 \right)$$
$$= I_0 \left(e^{kT\nu_d(t)/q_e} - 1 \right)$$

k - Boltzmann's constant

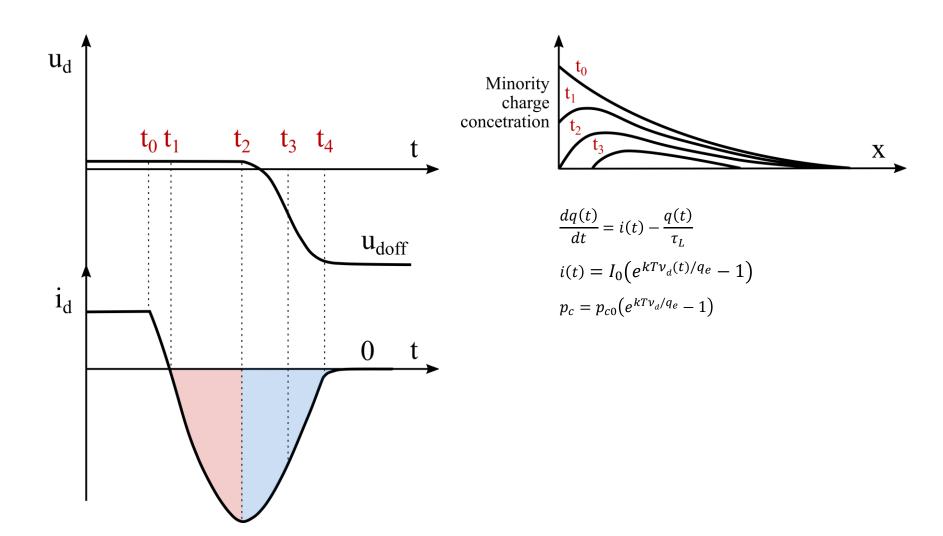
T - temperature

 q_e - the charge of the electron

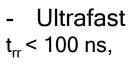

 τ_L - minority carriers (recombination) lifetime

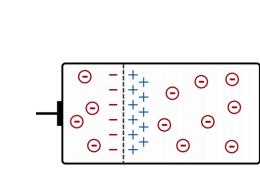

Diodes - I-V curve (static)

 i_d $-1/r_d$ U_{BD} $\int \int \int U_{d0}$ u_d


 $\begin{array}{l} u_{d} - \text{diode voltage} \\ i_{d} - \text{diode current} \\ U_{d0} - \text{diode turn-on voltage} \\ r_{d} - \text{diode internal resistance} \\ I_{0} - \text{diode leakage current} \\ U_{BD} - \text{diode breakdown voltage} \end{array}$

Diodes - Reverse recovery process

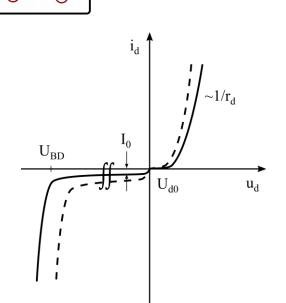



Diodes - types

Power diodes:

- Rectifying diodes $t_{rr} = n \cdot \mu s$
- Fast t_{rr} < μs, t_{rr} > 100 ns,

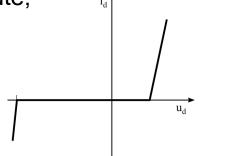
Light-emitting diodes



Zener diodes

Photodiodes

- Schottky Unipolar (majority carrier) device Small(er) U_{do} (0.3 - 0.6 V), More efficient, Negligible reverse recovery process, Smaller U_{BD} , Higher I_0 .


Diodes - packages

Diodes - important notes

Diodes are:

- Uncontrollable semiconductor devices,
- Turned ON and OFF by the circuit in which they are placed,
- Turned ON when the circuit imposes the "higher-thanzero" u_d *voltage*,
- Turned OFF when the circuit forces the diode *current* to fall to "zero",
- The first approximation is used for diode losses estimation in the ON state, i_a^{\dagger}

1_d

 \mathbf{u}_{d}

Diodes have complicated turn OFF process (reverse recovery process).